The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet.
نویسندگان
چکیده
We have previously shown that high-sugar diets increase mortality and left ventricular (LV) dysfunction during pressure overload. The mechanisms behind these diet-induced alterations are unclear but may involve increased oxidative stress in the myocardium. The present study examined whether high-fructose feeding increased myocardial oxidative damage and exacerbated systolic dysfunction after transverse aortic constriction (TAC) and if this effect could be attenuated by treatment with the antioxidant tempol. Immediately after surgery, TAC and sham mice were assigned to a high-starch diet (58% of total energy intake as cornstarch and 10% fat) or high-fructose diet (61% fructose and 10% fat) with or without the addition of tempol [0.1% (wt/wt) in the chow] and maintained on the treatment for 8 wk. In response to TAC, fructose-fed mice had greater cardiac hypertrophy (55.1% increase in the heart weight-to-tibia length ratio) than starch-fed mice (22.3% increase in the heart weight-to-tibia length ratio). Treatment with tempol significantly attenuated cardiac hypertrophy in fructose-fed TAC mice (18.3% increase in the heart weight-to-tibia ratio). Similarly, fructose-fed TAC mice had a decreased LV area of fractional shortening (from 38+/-2% in sham to 22+/-4% in TAC), which was prevented by tempol treatment (33+/-3%). Markers of lipid peroxidation in fructose-fed TAC hearts were also blunted by tempol. In conclusion, tempol significantly blunted markers of cardiac hypertrophy, LV remodeling, contractile dysfunction, and oxidative stress in fructose-fed TAC mice.
منابع مشابه
TRANSLATIONAL PHYSIOLOGY The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet
Chess DJ, Xu W, Khairallah R, O’Shea KM, Kop WJ, Azimzadeh AM, Stanley WC. The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet. Am J Physiol Heart Circ Physiol 295: H2223–H2230, 2008; doi:10.1152/ajpheart.00563.2008.—We have previously shown that high-sugar diets increase mortality and left ventricular (LV)...
متن کاملDeleterious effects of sugar and protective effects of starch on cardiac remodeling, contractile dysfunction, and mortality in response to pressure overload.
Little is known about the effects of the composition of dietary carbohydrate on the development of left ventricular (LV) hypertrophy (LVH) and heart failure (HF) under conditions of pressure overload. The objective of this study was to determine the effect of carbohydrate composition on LVH, LV function, and mortality in a mouse model of chronic pressure overload. Male C57BL/6J mice of 6 wk of ...
متن کاملMineralocorticoid receptor blockade prevents Western diet-induced diastolic dysfunction in female mice.
Overnutrition/obesity predisposes individuals, particularly women, to diastolic dysfunction (DD), an independent predictor of future cardiovascular disease. We examined whether low-dose spironolactone (Sp) prevents DD associated with consumption of a Western Diet (WD) high in fat, fructose, and sucrose. Female C57BL6J mice were fed a WD with or without Sp (1 mg·kg(-1)·day(-1)). After 4 mo on th...
متن کاملAcquisition of brain Na sensitivity contributes to salt-induced sympathoexcitation and cardiac dysfunction in mice with pressure overload.
In animal models of salt-sensitive hypertension, high salt augments sympathetic outflow via central mechanisms. It is not known, however, whether pressure overload affects salt sensitivity, thereby modifying central sympathetic outflow and cardiac function. We induced left ventricular hypertrophy with aortic banding in mice. Four weeks after aortic banding (AB-4), the left ventricle wall thickn...
متن کاملReversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy.
BACKGROUND Sustained pressure overload induces pathological cardiac hypertrophy and dysfunction. Oxidative stress linked to nitric oxide synthase (NOS) uncoupling may play an important role. We tested whether tetrahydrobiopterin (BH4) can recouple NOS and reverse preestablished advanced hypertrophy, fibrosis, and dysfunction. METHODS AND RESULTS C57/Bl6 mice underwent transverse aortic constr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 295 6 شماره
صفحات -
تاریخ انتشار 2008